If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=n^2-3n-90
We move all terms to the left:
0-(n^2-3n-90)=0
We add all the numbers together, and all the variables
-(n^2-3n-90)=0
We get rid of parentheses
-n^2+3n+90=0
We add all the numbers together, and all the variables
-1n^2+3n+90=0
a = -1; b = 3; c = +90;
Δ = b2-4ac
Δ = 32-4·(-1)·90
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{41}}{2*-1}=\frac{-3-3\sqrt{41}}{-2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{41}}{2*-1}=\frac{-3+3\sqrt{41}}{-2} $
| y/2-9=-10 | | 45+8x=18+5 | | 3(x+2)=1-5 | | p/5+6=4 | | 3x+4=2x−53x−2x=−5−4 | | 10(y+3)+2y=18 | | m−16=12 | | h/18+15=14 | | m+1=83 | | j+21=27 | | w-7=33 | | y/8-1=1 | | t+20=36 | | t/3+3=-3 | | 59=b-10 | | (2^(3x)+1)+52=180 | | w−7=33 | | b-37=7 | | 65/x=-5 | | 9n-18=36N=6 | | s-11=58 | | 78=h+62 | | −1(x+2)+2=7 | | 7/1=n/15 | | v+6=55 | | 9(4)^x=180 | | 19=g+14 | | 0=112x-0,8x | | x²+x²=36 | | b+53=61 | | 3x+1+2x^2=45 | | x²+ײ=36 |